DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Report for Practical Course

Control of Modular Robots

Authors: Sophie Sepp, Benedict Feldotto, Abdallah Emad Attawia, Daniel Heinze
Supervisor: Andrea Giusti M.Sc.
Submission Date: 02.07.2015

Abstract

In this course our team implements the kinematic and dynamic model of Schunk’s
reconfigurable modular robot manipulator LWA 4P. The forward and inverse kinematics
are implemented and trajectories in the task space are designed. For the designed
trajectories a kinematic control algorithm is implemented and tested. For the dynamical
model we use Matlab and Simulink to implement the single modules. For that we first
obtain the Equations of Motion using the Newton-Euler-formulation. We characterize
the modules for an automatic modelling method by providing estimates for masses
and inertia tensors using measurements and CAD data, so that the EoM can be
automatically achieved. We then provide the preliminary Simulink model for the
robotic arm. Secondly, we identify the dynamic model of the actuators using available
data. We implement a simulator of the robot by enhancing the Simulink model including
saturation effects and possible delays and validate the model using measurements.
The third step is to design and tune the decentralized controllers while considering
limitations due to the sampling time and test them on the robot. We finally test the
controllers with a trajectory planner modelling the kinematic behaviour, which is
developed in the kinematic model.

ii

Contents

Abstract
1 Introduction

2 Kinematic Modelling and Kinematic Control
2.1 Forward Kinematics
2.1.1 Denavit-Hartenberg Convention
2.1.2 Homogeneous Transformation Matrix
2.1.3 Position and Orientation Representation
2.14 Forward Kinematics Test
2.2 Inverse Kinematics o
221 The Jacobian Matrix
2.2.2 Inverse Kinematics Iterative Method
2.2.3 Joint Space Trajectories for Point-to-Point Motion
2.3 KinematicControl.
231 Robot Assemblies.
2.4 Kinematic Controlin taskspace.,
241 Trajectory designin taskspace
242 Kinematiccontrol Lo

3 Dynamical Model
3.1 Equation of motion (EoM) of the manipulator
3.1.1 EoM using Newton-Euler Algorithm
3.1.2 Simulating therobot o 000
3.2 Deriving a dynamical model of the actuators and combining it with the
Simulink Model of task B.1)
3.2.1 Theoretical background: DC motor
3.22 Equations describing DCmotor
3.2.3 Deriving a Simulink Model for the DC motor equations

4 Task 3 - Joint-space controllers
4.1 Designing decentralized controllers
42 Improvements with model-based controller actions

ii

O 0 NI OO DN DN

| J o S G S G G W G Y
[e>BNe BNe N BN S

25
25
25
28

29
30
31
35

1ii

Contents

5 Modularizing Newton-Euler method
6 Conclusion

List of Figures

List of Tables

References

60

63

65

67

68

v

1 Introduction

As robots are getting more and more complicated, modular robots play an important
role in robotics. Modular robots consist of independent cubes, which can connect
themselves in different ways in order to fulfill a task. Each of the cubes has its own
power supply and intelligence and can have specific tools for solving a problem under
special conditions. After a computer has been fed a problem, it analyzes it and connects
to the cubes in such a way that it can solve the problem. The cubes have the same size
in modular robots in opposite to fractal robots, which can have cubes of different sizes.
The cubes can be practically identical built, with similar software implementations, so
that the input data and combinations of moduls determines how the task is executed.
In this course our team implements the dynamic model of Schunk’s reconfigurable
modular robot manipulator LWA 4P. We use Matlab and Simulink to implement the
single modules. For that we first obtain the Equations of Motion using the Newton-
Euler-formulation. We characterize the modules for an automatic modelling method
by providing estimates for masses and inertia tensors using measurements and CAD
data, so that the EoM can be automatically achieved. We then provide the preliminary
Simulink model fort he robotic arm. Secondly, we identify the dynamic modell oft he
actuators. With Black-Box identification and with White-Box identification. In the next
step, we implement a simulator of the robot by enhancing the simulink model including
saturation effects and possible delays and validate the model using measurements.
The fourth step is to design and tune the decentralized controllers while considering
limitations due to the sampling time and test them on the robot. We finally test the
controllers with a trajectory planner modelling the kinematic behaviour, which has
been developed by our second team.

2 Kinematic Modelling and Kinematic
Control

Responsible: Abdallah Attawia and Daniel Heinze

Kinematics is the study of motion of a body or a system of bodies without taking the
forces causing this motion into consideration. In this chapter the forward and inverse
kinematics as well as the kinematic control of the Schunk Powerball Light Weight Arm
LWA 4P are studied using Matlab/Simulink. This manipulator is composed of three
powerballs and two links connecting them. Each ball contains two revolute joints, which
have joint limits from [—170°,170°], and thus, has two degrees of freedom (2.1). In this
study there is no end-effector attached to the last coordinate frame of the manipulator.
Therefore, the last coordinate frame will have a distance of zero from the one before.

2.1 Forward Kinematics
Author: Abdallah Attawia [SKO8] - [SSVO10] - [Sch15] - [Cur14] Obtaining the pose of

the end-effector of the robotic arm in the task space relative to the base is called the
forward kinematics. By computing the transformation between the coordinate frame of
the end-effector (also called the tool-frame) and the base frame, the forward kinematics
problem is solved. Deriving the forward kinematics can be done using more than one
convention. However, in this study, the Denavit-Hartenberg convention is used.

Starting from the bottom up, the following sections explain how to acquire the pose
of the end-effector given the joint angles.

2.1.1 Denavit-Hartenberg Convention

The Denavit-Hartenberg Convention is a straightforward systematic way to obtain
the parameters of each joint and to define the relative position and orientation of two
consecutive links. Before evaluating the DH parameters, the coordinate frames are
assigned to each joint according to the following criterion:

1. Axis z; is chosen along the axis of joint i 4+ 1, i.e. z; is the axis of rotation of joint
i+1

2 Kinematic Modelling and Kinematic Control

-170°

Figure 2.1: Schunk LWA 4P Motion Limits

2. Axis x; is chosen along the common normal of z;_; and z;, its in the direction
from joint 7 to joint i + 1

3. Axis y; is chosen as to complete the right hand rule

Figure 2.2 shows the assigned coordinate frames to the Schunk LWA 4P manipulator.
The distance from the base to the first powerball is 0.205m. The lengths of the first and
second links are 0.350m and 0.304m ,respectively.

The DH parameters are 4, «, d and 6. 'a’ is the distance between the joints along
the x-axes and a symbolizes the joint rotation about the x-axes. In contrast d and 6
define the distance along and rotation about the z-axes, respectively. Out of the four
DH parameters, two, a and «, are constant and depend only on the geometry of the
manipulator and the assigned coordinate frames. One of the other two parameters is a
variable depending on the type of the joint.

e if joint i is revolute, 0; is a variable
e if joint i is prismatic, d; is a variable

The six joints of the Schunk LWA 4P manipulator are revolute, which means that
¢ is the only input variable for each joint. Table 2.1 shows the DH parameters of
the Powerball, which are not unique since they depend on the coordinate frame
assignments.

2 Kinematic Modelling and Kinematic Control

Figure 2.2: Schunk LWA 4P Assigned Coordinate Frames

2 Kinematic Modelling and Kinematic Control

i a; L% dl' 91'
1 0 —t/2 | 0.205 | 64
2 | 0.350 0 0)
3 0 /2 0 63
4 0 —7t/2 | 0.305 | 64
5 0 /2 0 05
6 0 0 0 06

Table 2.1: DH Parameters of the Schunk LWA 4P Manipulator

Acquiring the Denavit-Hartenberg parameters is the the first step to solve the forward
kinematics problem. It allows to find the homogeneous transformation matrix, which
is explained in the following section. It is taken into account that the joint angle limit
for all joints is between [—170°,170°].

2.1.2 Homogeneous Transformation Matrix

The homogeneous transformation matrix is a matrix that represents the spatial dis-
placement of the tool-frame relative to the base frame. It is derived by multiplying
the transformation matrices of each two consecutive links. 2.1 shows the individual
coordinate transformations from joint i to i — 1.

cos(q;) —sin(q)icosa; sin(q;)sina; a;cos(q;)

A1(g) = sin(q;) cos(qi)cosa; —cos(q;)sina; a;sin(g;)
! 0 sinu; COSK; d;
0 0 0 1

(2.1)

The DH parameters are substituted into the A-matrix to obtain the transformation
between each two consecutive links.

cos(qj1) 0 —sin(q1) O
q

o |sin(q1) 0 cos(q1) 0
M= 0 -1 0 205.3 22)
0 0 0 1

2.2 shows an example of an individual coordinate transformation matrix. A? is
the transformation matrix from frame 1 to frame 0. The individual transformation
matrix between each two consecutive coordinate frames are obtained the same way. As

2 Kinematic Modelling and Kinematic Control

shown in 2.3 these individual coordinate transformation matrices are expressed in one
homogeneous transformation matrix T} that relates the end-effector to the base.

T? = AY(q1) * AX(q2)...... Af_l(qi) (2.3)

2.1.3 Position and Orientation Representation

The minimum number of coordinates to represent a pose in the space is six; three
coordinates to describe the position and the other three for the orientation. Let k(gq) be
the pose of the end-effector as a function of the joint variables [q1, 42, ...q4]. Let P, be
the position of the end-effector and ¢, its orientation. 2.4 shows how the end-effector’s
pose is represented.

P,
ko) = |] 04
Pe
In order to reach the aforementioned representation, the position is extracted and the
orientation is computed from the homogeneous transformation matrix 2.5.

0
o T2 3 P

TO0 — Y1 T2 123 Opz (2.5)
r31 r2 T OpE '
0 0 0 1

First the 3x1 position vector 'P} (2.6) is formed by taking out the first three elements
of the last column from the homogeneous transformation matrix in 2.5.

Op,
P, = |op! (2.6)
Ope
As a simplified example for the position vector, looking at the position vector in 2.2 it

shows the distance between the base frame 0 and frame 1, which is a translation along
the z0 with a distance of 0.205m (2.7).

0
P=1| 0 (2.7)
0.205

Then the 3x1 orientation vector ‘¢, is formulated by calculating a set of Euler angles
2.8 from the 3x3 rotation matrix from 2.5. This is also called the minimal representation
of the orientation of a body in space. There are two possible sets of Euler angles,

2 Kinematic Modelling and Kinematic Control

01 | 02 | 63 | 64 | 65 | 606

|
IS

|
ool
oS
IS

Table 2.2: Random Joint Angle Assignments

namely, ZYX (Rollg-Pitchf-Yaw) and ZYZ angles. In this study the Roll-Pich-Yaw
method is used. The 6 is not to be confused with the joint angle’s 6.

¢
o= |0 (2.8)
(
where,
¢ = atan2(ry,r11) (2.9)
0 = atan2(—rz1, \/13, +133) (2.10)
Y = atan2(rsp, 33) (2.11)

2.1.4 Forward Kinematics Test

To test the forward kinematics solution, two configurations are evaluated; the zero con-
figuration, where all the joint angles are set to zero, and another random configuration.

Figure 2.3 shows the Powerball in the zero configuration. The black part represents
the base and the blue and the red parts represent link 1 and link 2, respectively.

The second configuration is based on random joint angles shown in table 2.2. These
joint angles are substituted into the homogeneous transformation matrix (2.12) and then
the end-effector’s pose (2.13) is obtained. Moreover, figure 2.4 shows the manipulator
in this configuration and the end-effector in this pose.

-0.191 —-015 0 04
0191 015 0 —-04
0 _
L= 0271 0919 0 0421 @12)
0 0 0 1

2 Kinematic Modelling and Kinematic Control

05

z (m)

0.5

Figure 2.3: Powerball Zero Configuration

0.4
—-04
0.421
P, = 536 (2.13)
—0.286

157 |

2.2 Inverse Kinematics
Author: Abdallah Attawia [SK08] - [SSVO10] - [Cra05] The inverse kinematics solution

is required to find out the proper joint angles needed to reach a certain position and
orientation of the end-effector. To reach this end, several methods can be used such
as Newton-Raphson iterative method, Gradient Descent method, Cyclic Coordinate
method, ..etc. However, in this study, the Gradient Descent Method is utilized. Several
steps need to be executed in order to solve the inverse kinematics problem, i.e. obtaining
the Jacobi matrix (known as the Jacobian), setting random initial joint angles and
iterating until the right joint angles are found. To test the inverse kinematics algorithm
joint-space trajectories for point to point motion in the task space are designed.

2 Kinematic Modelling and Kinematic Control

05

Z (m)
)

0.5

Figure 2.4: Manipulator Configuration With Random Angles

2.2.1 The Jacobian Matrix

The Jacobian matrix is a 6xn matrix, where n is the number of joints. It is one
of the most useful tools in manipulator characterization since it is used in finding
singularities (configurations where the manipulator uses one or more degrees of
freedom), determining inverse kinematics algorithms, deriving dynamic equations
of motions and many other functions. Like the homogeneous transformation matrix
conveys the position and orientation of the end-effector, the Jacobian matrix describes
how they are affected with changes in the robot parameters. For instance, column i of
the Jacobian represents the contribution of the linear and angular velocity changes of
joint i in the change of the end-effector’s pose. In other words, it is used to express
the end-effector’s linear and angular velocities as a function of the joint velocities. The
Jacobian matrix can be obtained either analytically or geometrically.

Analytic Jacobian The analytic Jacobian J,(q) is computed by differentiating the end-
effector’s pose function 2.4 obtained in the forward kinematics algorithm with respect
to the joint variables and thus obtaining a 6x6 Jacobian matrix.

The analytical technique is represented by first differntiating the end-effector’s
position vector with respect to the joint variables to form the first three rows of the
Jacobian (2.14) and then doing the same with the end-effector’s orientation to form the

2 Kinematic Modelling and Kinematic Control

last three rows (2.15). Consequently, the analytical Jacobian], is fomred using (2.16).

pe = Jp(q)4 (2.14)

P = Jo(q)4 (2.15)
_|Jp

Jo = [ﬁp] (216

Geometric Jacobian The geometric Jacobian J(gq) is calculated by first obtaining the
linear and angular velocities (using 2.17 and 2.18) of each joint in terms of the joint
angles 41, 92, ..., g» and then isolating the coefficients of § and forming the Jacobian.

pe = Jr(9)4 (2.17)
we = Jo(q)4 (2.18)
_ | Pe| _ :

v, = [wj = J(9)4 (2.19)

2.19 represents the manipulator’s differential kinematics, where J(q) is the 6x6
geometric Jacobian of the arm.
In order to compute the angular and linear velocities of each joint in terms of the joint
variables, formulas 2.20 and 2.21 are utilized.

g =1 Riw; + qi + 171 Z;,1(2.20)

i =1 R('vi + wiX'Pigq) (2.21)

By collecting the factors of terms that are multiples of 43, §», ..andge the elements of
the geometric Jacobian are obtained.

10

2 Kinematic Modelling and Kinematic Control

2.2.2 Inverse Kinematics Iterative Method

To solve the inverse kinematics problem iteratively the Gradient Descent method shown
in 2.23 is used. First initial random joint angles are chosen. Then the iterations in 2.23
are implemented until the Euclidean norm of the error 2.22 is less than a set threshold.
The pseudo-inverse of the Jacobian can be used instead of the Jacobian transpose.
The pseudo-inverse is usually used to overcome the problem of a singular Jacobian
or a non-square Jacobian. However, since the pseudo-inverse is not working for this
Jacobian, the transpose is used.

e(qr) = ka — k(qx) (2.22)

Ger1 = e+ a]q (ke — K(qe)) (2:23)

In this iterative method, a threshold of 0.001 is set and the Jacobian utilized is the

analytic Jacobian J,. Furthermore, to choose the constant «, several values are tested.

The plot in figure 2.5 illustrates the time to convergence of the tested values. As shown,

when setting « = 6.2 the algorithm converges faster obtaining the proper joint angles
to reach the desired pose.

Figure 2.5: Convergence time of different values of «

As mentioned before, the end-effector’s pose is represented by the position and
orientation of the end-effector. In this study, however, the orientation is neglected and

11

2 Kinematic Modelling and Kinematic Control

only the position part is solved. The reason is that the inverse kinematics iterative
method does not converge when testing the whole pose but it does when testing the
position only. Therefore the Jacobian utilized is the 3x6 analytic Jacobian Jp, which is
determined by differentiating the position vector P, with respect to the joint variables,
i.e. the first three rows of J,.

As an example, the robot configuration, i.e. the suitable joint angles, for a random
desired position (2.24) is required. After choosing any random initial angles and setting
a = 6.2 the iteration 2.23 is implemented until ther error is less than 0.001. 2.25 shows
the last value of g, which is the vector of the essential joint angles that are needed to
reach the desired position k.

0.4
kg = (0.2 (2.24)
0.3

[1.11]

0.634
1.6

L 1.0
0

| 0.5

(2.25)

To test the inverse kinematics algorithm the obtained joint angles are tested with
the forward kinematics algorithm. Figures 2.6 and 2.7 illustrate the manipulator’s
configuration using the resulting joint angles. The arrows point to the position of the
end-effector which matches the desired position in 2.24.

2.2.3 Joint Space Trajectories for Point-to-Point Motion

Now, it is required to design joint space trajectories for point-to-point motion in the
task space. The joint space is the set of all possible joint parameters and the task space
is the set of all possible poses of the end-effector. A point-to-point motion is where
the manipulator moves from an initial configuration g; to a final configuration gy in a
specified time f¢. The time is to be chosen carefully in order not to exceed the joints’
dynamic limits. The trajectory scaling method is a method that can be used to make
sure the required motion time does not violate the dynamic limits. Here, the time ¢
specified will be chosen randomly to solve the example without taking the torque limits
into consideration.

Using polynomials is a natural choice to design joint trajectories for a point to point
motion, since they provide smooth continuous motion. A cubic polynomial as in 2.26 is

12

2 Kinematic Modelling and Kinematic Control

08 —
06 —

04 —

02—
0.4 —
0.6 -

0.8 —

I I I I I I |
08 06 04 0z a 0.2 0.4 0.6 0.8 -1
* (m)

Figure 2.6: End-effector Position in X-Z Plane

used.

q(t) = azt® + axt? + art + ag (2.26)

2.26 is differentiated with respect to time twice in order to get the velocity as well as
the acceleration profile (2.27 and 2.28).

G(t) = 3azt® + 2axt + ay (2.27)

I](t) = 6ast + 2a; (2.28)

To determine a specific trajectory, the initial time t; is set to zero and the following
system of equation shall be solved.

apg = (i (2.29)
a; ={; (2.30)
qf = H3tj}’c + aztjzc + ﬂltf +ag (231)

13

2 Kinematic Modelling and Kinematic Control

05 —|
06 —|
04 —|
0z - \

0.2 —

Z (m)
=
|

0.4 —

0.6 —

0.8 —

T T T T T T T T
0.8 0.6 0.4 0.2 o oz 04 06 08 1
¥ {m)

Figure 2.7: End-effector Position in Y-Z Plane

l]f = 3[13tj2c + Zﬂlztf + aq (2.32)

Given the initial and final set of joint angles, q; and gy, by setting the initial and final
velocities, 4; and 4 to zero, and specifying the time ¢ the coefficients of the cubic
polynomial in 2.26 are determined.

The example from the inverse kinematics part will be used to explain how this
method works. The starting configuration is the manipulator zero configuration where
the position of the end-effector is p, = [000.86] and it goes to the final configuration
which is shown in 2.25. First the four coefficients ag, a1, a, and a3 are computed using
2.29 to 2.32. The determined coefficients are then substituted into equations 2.26, 2.27
and 2.28 to obtain the position, velocity and acceleration profile, respectively. Figures
2.8, 2.9 and 2.10 illustrate the position, velocity and acceleration profiles in an infinite
time. The profiles as expected:

e Position profile: cubic function
e Velocity profile: parabolic function

e Acceleration profile: linear function

14

2 Kinematic Modelling and Kinematic Control

18 T T T T T T T
—a
—
14F ﬁ 1
—
®
120 g

joint angle (rad)
= =

=

T

L
05 06 07 08 09 1
time (s)

Figure 2.8: Position Profile in a Cubic Polynomial Timing Law

25 T T T T T T T
—dy
— g2
dg3
—d
— g5
2t o |

joint welocity (radis)

]
i 01 02 03 04 05
time |s)

Figure 2.9: Velocity Profile in a Cubic Polynomial Timing Law

15

2 Kinematic Modelling and Kinematic Control

0 T T T T T T T
—ddql
dd?
8 ddg3 |
— ddgd
I
[S gt [+
T,
b
" =Y
= 2
T =N
3 2 I
3
8 2
W0 \\ =
] e
8 2 \:\ T
= S
a Ry
Y \“}\R\
R
5 SO
il
10 | | I I L | | |

|
0 01 0z 03 04 05 08 07T 08 ik} 1
time (s)

Figure 2.10: Acceleration Profile in a Cubic Polynomial Timing Law

Another type of polynomial that can be used to design the joint space trajectories is
a fifth order polynomial (2.33). One advantage of using a fifth order polynomial is the
ability of assigning initial and final values for the acceleration as well. In that case six
constraints have to be satisfied. The coefficients ag to a5 are computed as for the third
order polynomial and then the trajectory can be easily designed.

q(t) = ast® + agt* + ast> + axt® + ayt + ag (2.33)

16

2 Kinematic Modelling and Kinematic Control

2.3 Kinematic Control

Author: Daniel Heinze

Precise control of the modular robot requires the development of an kinematic control
algorithm, which takes the desired position and angles as an input and interpolates
the movement of the robots joints in time according to its starting and required final
position.

2.3.1 Robot Assemblies

In order to derive the DH-tables and later the transformation matrix, we need to create
assemblies of the robot. Additionally we need to specify the x and z axis, to set a
consistent orientation across the whole project and teams.

Figure 2.11 contains the two assemblies with all x and z axis.

Figure 2.11: Left: Assembly variant 1. All calculations are based on this.
Right: Assembly variant 2.

The z-axis indicates the axis around which this specific joint can move.

17

2 Kinematic Modelling and Kinematic Control

2.4 Kinematic Control in task space

The kinematic control describes the movement of the robot with x,y and z coordinates
and its yaw, pitch and roll angles. In order to achieve this movement the trajectories
of the robot have to be designed and a kinematic control algorithm needs to be found.
The findings of the previous chapters, like the Jacobian or the Forward-Kinematics
algorithm will help achieving this goal.

2.4.1 Trajectory design in task space

The trajectory algorithm uses two 6x1 vectors as an input (which contains x,y,z and the
3 angles). These represent the start point and desired point of movement, where the
end-effector of the robot should move to. Since the algorithm is time-dependent, which
allows to get the position of the end-effector after every time step, the algorithm also
needs to take the start and end time as an input.

Siciliano et al. [SSVO10] describe, how movement along one dimension can be interpo-
lated by using quintic polynomials. Quintic polynomials are polynomials of 5th order.
These polynomials in general are given in equation (2.34)

f(x) = apx® + arx* + arx® + a3x® + agx + as (2.34)

This leads to a linear equation system A*x = b, where b is a 6x1 vector with initial and
final position, velocity and acceleration, x are our desired parameters of the quintic
polynomial and A is the matrix of the polynomial values. This matrix is shown in
equation (2.35):

1ty 3 t t £

0 1 2xtg 313 4xt 5xt]

) 0 0 2 6xtg 12xt5 20xt]
= 2 3 4 5
1ty tf2 tf3 tf4

8 1 2xty 3*tf 4*tf 5*tf

0 2 6*tf 12*t12(20>|<t‘3°’r

To test the behaviour we use the following Simulink model. (See figure 2.12)

An example for x,y and z leads to the output (x-axis = time) in figure 2.13

18

2 Kinematic Modelling and Kinematic Control

> time
To Workspace
3
Clock
> time v‘ ¥ > Y
fen
To Workspace1

MATLAB Function

Figure 2.12: Simulink model for the trajectory design.

25 T T T T T T T T T

201

10

Figure 2.13: Example output of the designed trajectory algorithm.

19

2 Kinematic Modelling and Kinematic Control

function g = movement (t, g0, gf, tld, tf)

% matrix for quintic polynomials

matrixQP = [
1 D to~2 t0"™3 td~4 t0"™5 ;
01 2%c0 3F*tc0"~2 4*%c0"~3 5*c04 ;
oo 2 6%t 12#c0"2 20%£0"3;
1 cf cf~2 cE™3 tf~4 tE™5 ;
01 2%cf F*cf~2 4%cE~3 S*cfEt4
oo 2 e*cf 12%cf~2 21*cf"3;
1:

% wvalues of po=s, vel and acc in initial and goal

values = [g0y Oy O0; gf; O0; 0]:

% =olve for a0, al, a2, a3, a4, as

1]

= linsolve (matrixQP, walues);

% calculate g
g =a(l) + a2(2)*c + a(3)=c"2 + 2(4)*"3 + a(5)*t"4 + a(6)=t"5;
end

Figure 2.14: Matlab code for the trajectory design.

2.4.2 Kinematic control

In this chapter the development of an kinematic control algorithm is described. This
follows the approaches by Siciliano et al. [SSVO10] and Spong et al. [SHV06].

An kinematic control algorithm is used, to get the movement of each joint from the
robot to transform the end-effector to a desired point. It takes a 6-dimesional vector
as input (position: 3, angles: jaw, pitch, roll) and converts them into a q vector with
movement values for each joint. This is done for each time step.

The Simulink model for the kinematic control is displayed in figure 2.15

The model takes the desired position (6x1 vector) and its derivative as input and
outputs the current position of the system. It then subtracts the input by x, (position
of end effector) to minimize the error of the system. After adding a gain of 100* I
which showed to be a efficient constant to use for this algorithm setup, we use (2.36) to

20

2 Kinematic Modelling and Kinematic Control

] add
- + 1
€ d > - »(2
x_d = * 4 dg/dt s q C)
h Jacobianinverse

Add

Gain q
J1(g) Integrator

X e ‘ q

forwardKinematics

K(™)

Figure 2.15: Simulink model for kinematic control.

calculate dq/dt.

G =Ja(q) (s +Kxe) (2.36)

In this equation the transpose Jacobian is used, which contains the information of all
robot joints. It is possible to use the inverse Jacobian in the equation, but this proved to
be extremely inefficient in test of the algorithm.

After this calculation we use the Simulink integrator to get the 6-dimensional q vector.
The initial values given in equation (2.37) are used, to calculate outputs, before the
actual input is used. To minimize the error of the system, the forward kinematics
algorithm is used, to calculate the movement of the end effector, which is subtracted
from the input.

In the following example it is shown, that the error minimizes after a short time after

21

2 Kinematic Modelling and Kinematic Control

starting the system. The desired input is given in (2.38)

0
0
0.3
0
0
0

Xg =

After running the model the resulting diagram 2.16 shows the position of the end-
effector in time. It can be clearly seen that shortly after the start each value is near to
its desired input. The yellow line is the third row value of the vector which represents
the z position and evaluates to 0.3.

0.5

04 I

03[

0.2 - =

0.1 1\ .

041 fr .

02| 7

03| =

04 1 1 1 1 1 1 1 1 1

Figure 2.16: Example output of the kinematic control algorithm.

22

2 Kinematic Modelling and Kinematic Control

Further examples of outputs from the algorithm are:

0
0.3
0.3
0.3
0.6
0.9

Xg =

0.5 4 -
N

05 =

25 =

Figure 2.17: Second sample output of the kinematic control algorithm. Based on input
(2.39)

23

2 Kinematic Modelling and Kinematic Control

0.9
0.6
.| 03
17| 09
0.6
0.3
2 T T T T T T T
15 _
1 _
p
0.5 | B
o} |
|
05 _
A —
15 _
2+ —
25 -
3 | | | | | | | | |
0 1 2 &) 4 5 6 7 8 9 10

Figure 2.18: Third sample output of the kinematic control algorithm. Based on input
(2.40)

24

3 Dynamical Model

Responsible: Sophie Sepp and Benedikt Feldotto

3.1 Equation of motion (EoM) of the manipulator

3.1.1 EoM using Newton-Euler Algorithm

There exist two different approaches for calculating the Equation of Motion for a robot.
The Lagrangian method uses assumptions about the potential and kinetic energy in
the various robot modules. Newton Euler’s method calculates velocities and forces
in a recursive way. Since Newton Eulers approach does not need any derivates, but
Lagrangians does, calculating velocities and forces is computationally more effective.
Because of this less complex and faster computation we will use the Newton Euler
method to calculate the Equation of Motion for the robot. Afterwards it is used to build
up a simulator of the robot in Matlab Simulink. Before we can start we have to adjust
the coordinate frame, offered by the kinematics group, for our purpose.

Adjusting coordinate frames

For the kinematic considerations the coordinate frames where attached as simple as
possible, in this case two at each center of the power balls. For the dynamic calculation
nevertheless we need to adjust the coordinate frames to the end of each link. In this
coordinate frames also the center of mass as well as the inertia are described. We
transform the coordinate systems to the desired positions as seen in Figure 3.1 and
calculate the adjustment with regular transition vectors and rotation matrices.

The Inertia matrices now should be described in these coordinate systems. This is
already done for the power-balls regarding the data sheets, for the extended links we
use Equation 3.1 and Equation 3.6 to transform the matrices in another frame. In a last
step we write the center of mass in our new coordinate frames.

Rotation of Inertia matrix:

I'=RxI«RT (3.1)

25

3 Dynamical Model

Figure 3.1: adjusted coordinate frames on the robot

Translation of Inertia matrix:

I' = IxlIr (3.2)
Ir = m*rg*ro*l—m*ro*rg (3.3)

with:

I — original inertia matrix

I'- transformed inertia matrix
I Inertia matrix for translation
r,— translation vector

Newton Euler method - Inverse dynamics

The recursive Newton Euler method computes velocities and accelerations in a forward,
forces and torques in a backward phase. Since our robot is fixed on a table and only

26

3 Dynamical Model

gravitational force is applied to it, we can make some assumptions for the base of the
robot [Burl5]:

%99 = [0,0,—9.81]T (3.4)
Owy = 10,0,0]7 (3.5)
%% = 10,0,0]" (3.6)

Here the first index names the link frame in which values are expressed, the second
one states the value corresponding link; all parameters are written in the corresponding
3D coordinate system using the [X,Y,Z] notation. In an iterative way now the velocities
and acceleration of the following links can be computed. As the next link is also
moved by movement of all the previous ones, previous values are transformed into
the next link frame with the corresponding rotation matrix and added to the own link
movements. For each link we us four formulas to calculate every link up to the tip:

i+1ﬂ°‘i+1 _ EHR iy 4 @Hl . HIZHl
1:+lu-)?.+1 — §+1R . ’it-b’i + §+1R . 'iUJi % '9-i+1 . i+1Z¢j+1 + éi+1i+lz,;+1
Hlf"z‘ﬂ = {R('Gi X TP + wi X ('wi X Py + ')

Yoy = Wi X "Po + wi x ("w; x "Pg,) +

Figure 3.2: Newton-Euler: velocities and accelerations

Forces and torques resulting of robot actuation are applied at the TIP but nevertheless
will affect every joint of the robot. This is the reason why we now start at the TIP of the
robot and calculate forces and torques for all links back to the base. For the general
case we first assume that there are no external forces at the TIP and so:

*f6 = [0,0,0]" (3.7)
%16 = [0,0,0]T (3.8)

(for our Schunk LWA robot link number 6 is the last link, but since equations are
equal for all links this can be extended as desired.) Each links forces and torques are
calculated with the formulas in Figure 3.3 [Burl5]:

Our Robot only consists of rotational and no prismatic joints, so that the torque in
each joint is the Z component of the torque vector of each link (Figure 3.4)

We implement the Newton Euler algorithm in a matlab function called “NE_rec”. As
an input we provide position g, velocity 4 and the acceleration § as vectors with the

27

3 Dynamical Model

'Fi =m -,

iNt' = Ciir.i . i:.i:?- + iwi X Cilr-i_ ' iwi

ifi = §+1R ’ i+1f-i+1 + iFi

n; ="N; + §+1R ' Hlni-m + iPc,E x "I + iP7:+1 X §+1Ri+1f@'+1

Figure 3.3: Newton-Euler: torques and forces

Figure 3.4: Newton Euler: joint torque

elements of all joints and the vector for gravity in the base frame. Since the calculation
is done in a forward and backward phase with itself equal formulas we implement two
for-loops, besides the initialization for base and TIP. The algorithm provides torque
values for all the joints and reshaped as a vector this is also the output of our function
NE_rec.

Equation of Motion (EoM)

The Equation of Motion (Figure 3.5) describes the torques of the robots joints with
Newton’s Law. Additional terms for friction, centripetal force and gravity are added.
To get our final equation we have to determine the mass matrix M and the vector n
which includes centrifugal and centripetal forces C, friction v and gravity g.

"(1151)

M(q)q+ C(q,q)q + v(q) + g(q)= u,

Figure 3.5: Equation of Motion

For this purpose we call the NE_rec function with specific parameters as shown
in Figure 3.6 [Giul5] and save the results as new matlab functions so that we can call
them later quickly to get the values. We use symbolic variables as place-holders for the

robot configuration g, 4, §.

3.1.2 Simulating the robot

The calculated EoM fully describes the dynamic of the robot (except motor dynamics)
and so can also be used to build up a simulator for evaluation purpose. The robot gets

28

3 Dynamical Model

o I"I(q, q) = NErec(CI; 9. O,g)

o the i-th column of M(q) is obtained as M;(q) = NE,(q,0, k;, 0),
with k; selected to get the i-th colum (e.g. for second column
ki=[0100---0]7)

Figure 3.6: NE_rec function call to get EOM parameters

the torque vector as an input and position, velocities and accelerations can be measured.
For calculation of the acceleration from torque we reorder the Equation of Motion:

§ = ino[M(q)] * [u—n(q,q)] (39)

Guided by this equation we build up a Simulink model, copying the structure. We
use the saved values for M and n to enable fast simulation. Integrating the acceleration
two times we get velocity and position, respectively, which can themselves be used for
calculation. Figure 3.7 shows the setup in the simulator subsystem.

dq
q

R A e 1 1
u . o @ dial» - > -
Transport Saturation dq fen S dg S q
Delay Integrator Integratort

Dynamical model
ddq = invM(q)*[u-n(q,dq)]

Figure 3.7: Robot dynamics simulation

3.2 Deriving a dynamical model of the actuators and
combining it with the Simulink Model of task B.1)

[G.P12]. [M.N08]. [HKSR]. [MWS06].

In task B.2 a dynamical model of the actuators is derived and the Simulink model
of task B.1 is enhanced with the actuator models. The robotic arm LWA 4P has six
brushless DC motors which are modelled in Simulink to be combined with the Simulink

29

3 Dynamical Model

model of task B.1. The modelling of the motor is hereby divided by the electrical part
of the motor equations and the dynamical part of the motor equations.

3.2.1 Theoretical background: DC motor

A DC-motor works on the principle that a current-carrying conductor in a magnetic
tield experiences a force, which can be expressed as the product of magnetic flux and
the current in the conductor. It consists of a fixed stator, which provides a constant
magnetic field and a armature part, which is a rotor that rotates inside the stator and
is a simple coil. The armature is connected to a DC power source through a pair of
commutator rings. The current that flows through the coil induces a electromagnetic
force on it according to the Lorentz force, which causes the coil to rotate. Thus the
commutator rings connect with the power source of opposite polarity. As a result, on
the left side electricity flows away while on the right side, electricity flows towards.
Thus the torque action is in the same direction throughout the motion, which is the
reason why the coil continues rotating. A characteristical aspect of DC motors is the
production of back EME. A rotating loop in a magnetic field produces an emf according
to the principle of electromagnetic induction, which are in this case the armature loops.
So an internal EMF will be induced, that opposes the applied input voltage.

Figure 3.8: DC motor.

30

3 Dynamical Model

3.2.2 Equations describing DC motor

Electrical part of the motor equations:

L it
e WS
Iy \J o
! Ty
vin(D Vi MR
o
Fag. £3 Uhwowsl diagrass oo annadore conieolksd D0 sobor.

Figure 3.9: Circuit diagram for armature controlled DC motor.

V(t): Applied voltage

L: Armature self inductance
R: Armature resistence

Kp: Back emf constant

6,,: mechanical rotor angle
Ty generated torque

7: load torque

The voltage V1 and Vr can be computed in the following way:

— di
VL_LXE

VR:RXi

31

3 Dynamical Model

The electrical part of the motor can be computed by the sum of V1, Vr and the back EMF.

Vi(t) =L x &+ R xi(t) +V,

The back (induced) electromotive force V, is proportional to the angular velocity
w(t) seen at the shaft. K}, the back EMF constant, also depends on certain physical
properties of the motor.

Vb(t) = K, x w(t)

The mechanical part of the motor equations is derived using Newton’s law:

Jx = iri:u(t)—wa—kKSx(q—G)
i=1

The inertial load] times the derivative of angular rate equals the sum of all the
torques about the motor shaft and can be expressed by the sum of the induced current i
times the torque constant Km, the negative product of the back emf constant Kb and the
angular velocity w. and the torsional stiffness times the difference of angular postions
of the rotor and the joint.

dw u(t)—Bxw+Ksx (q—6)
J

Moreover, the torque u seen at the shaft of the motor is proportional to the cur-
rent i and can be expressed as the product of the current i and the torque constant K,
which is related to physical properties of the motor, such as magnetic field strength.

u(t) = Ky x i(t)

Including the gear ratio
Wy X Ty = Wy X To

Wi = T = K. =160

Wo Tm

32

3 Dynamical Model

wy = Ky X w,

Jin X O = =B X Oy +u+f X1y

Jox 0y =f X1

fXTn= f;—f"

Vi = Ky X wyy = Ky X K¢ X wo = Keg X Wy
We get:

]mxé;n:—BXGIm—l—u—l—%
]meTxf)'@:—BxKTXB'm—ku—k%

Jin X (K¢)? X 0y = —B x (K¢)? X 0y + Kz X u
Jeg = Jm x (Kz)?

Bey = B x (K¢)?

Ueg = Keg X 1

Umax = Keg X imax

So we get K¢; by dividing the maximum torque by the maximum current.

For the first type of motor this is 20 = 4.8728,

For the second type of motor this is 8% = 3.459 8

33

3 Dynamical Model

Having computed Jeq, Beg, theg, Key, the values can be integrated into a Simulink Model.

34

3 Dynamical Model

3.2.3 Deriving a Simulink Model for the DC motor equations

The equations describing the DC motor can be integrated into a Simulink Model
which combines the electrical part and the mechanical part and computes the torque
that is produced by each motor given the applied input voltage and the angular position
as inputs.

model dc motor.jpg

.
2 Y
e K} !
& =)
. = 1]
= oo B SO | v, N
T I e e
k) i q L E o
X Tl T B Il e i,
E J_‘“I ;l_i—ﬂh_._:-:'fﬁ_. _'—'—"'_'_'__._'_H_F. greon e " jl-rII-IL-_.
| Ljmny TR Pl
& — ==
jan
— oy .H-\.-I E "'I---:
Zer s o "-\-\.____hl
WSl My

Figure 3.10: Simulink odel combining electrical and mechanical subsystem of DC motor.

35

3 Dynamical Model

The vector of the torques of all motors is given to the Simulink Model derived in task
B.1 that describes the Equations of Motion, while the angular position that results from
the Equations of Motion being applied is given back to the motor model.

combined.jpg

e

5
I

f

oy)

B
F'-I

'

\
| e

|*J‘
i

i

iy

O—H—f3

p 1 =]

. — =

J L =)
o I -g__“_!

o 3 =
:-.|)

=)

Figure 3.11: Combination of motor model with Newton Euler computation.

36

3 Dynamical Model

Comparison motor type 1 to motor type 2:

Both motors were run with the maximum input voltage of 24V for 10 seconds.

Electric Power (P)

power motor 1.jpg

il
|
"H.l.rlll.u.l B R AR R AR '.H“.

.l,'q'lnull|'l"|'l'n'r1-'l||ll-'|-||ll'ln'!r'lnn'rl:l'|'|h'r'|'||'|n'r||"|'| Rk

|
\
1

Figure 3.12: Electric power of motor type 1.

37

3 Dynamical Model

power motor 2jpg

Figure 3.13: Electric power of motor type 2.

38

3 Dynamical Model

Induced Current (I/s)

current motor 1,jpg

¥]

-
I

-
1

L

&

&

|

Figure 3.14: Induced current of motor type 1.

39

3 Dynamical Model

current motor 2jpg

Figure 3.15: Induced current of motor type 2.

40

3 Dynamical Model

Torque (u/s)

motor 1,jpg

Figure 3.16: Torque of motor type 1.

41

3 Dynamical Model

motor 2jpg

-

Figure 3.17: Torque of motor type 2.

42

3 Dynamical Model

Angular position (q/s)

position motor 1,jpg

Figure 3.18: Angular position of motor type 1.

43

3 Dynamical Model

position motor 2.jpg

Figure 3.19: Angular position of motor type 2.

44

4 Task 3 - Joint-space controllers

Responsible: Benedikt Feldotto

4.1 Designing decentralized controllers

We now want to implement controllers for our robot. In our case control means reaching
a desired position of the robot in short time, stable and robust, with as little overshooting
as possible. For our modular robot approach we prefer first to build up a decentralized
control structure. Each motor attached to the joints is controlled independently as
a single-input/single-output system, so that the controller acts independently of the
number of attached robot modules and no precise dynamic model of the robot is
necessary. Getting a desired trajectory which includes desired positions (and eventually
velocities and accelerations) of each link we can control the motors in joint-space. We
set the goal angle for each motor individually and use the position sensors in the robot
to get feedback about the actual state. This decoupled feedback control structure lets
us build a robust controller.

Control effects

The motors are not able to bring the robot arbitrarily fast to the desired position. Inner
effects such as self-induction and also all attached links influence the motor behaviour.
The torque at the motors increase with each attached link as it is calculated with
T = F xs. Partially not exactly calculable effects such as joint Coulomb friction, gear
backlash, dimension tolerance, link rigidity etc. influence motor behaviour and can at
worse make the system unstable. Because we want the robot to act precise and stable
the motors have to be controlled using actual position measurements.

Motor model

We use the motor model developed in task 2 to design our controller. In a first step
all non-linear influences should be considered as external disturbances. Because of
the mentioned variety of effects a significant amount for the disturbance has to be
taken in account for implementing a robust controller. For simplified tuning of the
controllers first the feedback loops for flexibility and induced voltage are neglected

45

4 Task 3 - Joint-space controllers

and disturbances for voltage and torque are included as shown in Figure 4.1. The
previously mentioned influences on the motor behaviour are mostly covered with the
torque disturbance.

g-real

SO —

flesdbility
mechanical part

electrical part

Kl 1 1

I ' m ddq S dq S q
Transfer Fen2 Integratoré Integrators Scopel

Gain? Saturation

@ 60/ 2°pi) [«
Gaind Gairg

disturbance6

electrical part torque disturbance mechanical part
1 1 A 1 1
L_m s I_m ddg s dq B a
4 Integrator10 Gain12 Saturation1 Transfer Fen3 Integrator9 Integrator8 Scoped
\/R_\a}- 4 M—
Gain10 Gain1

Figure 4.1: Motor model: complete and considering disturbances

We can simplify the resulting motor model by modelling the two feedback loops
in the electrical and mechanical part with PT1 elements. For this purpose we use the
general rule for mathematical transformation of control circles in Equation 4.1.

Gy(s)

Gls) =13 Gr(5) * G (5)

(4.1)

with:

G(s) - closed loop transfer function
Gy(s) — forward path transfer function
G,(s) - return path transfer function

Equation 4.2 to Equation 4.5 show the transformation for the electrical part conclud-

46

4 Task 3 - Joint-space controllers

ing to an general PT1 element with time constant T, and factor k., for the mechanical
part Equation 4.6 to Equation 4.9 shows the transformation. The new simplified motor

model can be seen in Figure 4.2

1 1
1
G(s) = Rq
(®) %’*s—l—l
ke
Gls) = T,*xs+1
1
Gb(s) = kv
1/k
Gle) = ﬁ*sj—l
ky
G = 7571

disturbance8 disturbance9

Voltage disturbance electrical part

iy

Step?

torque disturbance

k e :
T_e.stl '/-

10 Gain1 Saturation5

torque

mechanical part

(4.2)
(4.3)

(4.4)

(4.5)

(4.6)
(4.7)
(4.8)

(4.9)

1

Figure 4.2: Motor model with PT1 elements

dq

>~ —»
s [a

Integrator3

47

4 Task 3 - Joint-space controllers

Position sensors

An encoder is attached to each motor in the ERB power balls of the robot. These
modules of type "HEDS 9140" (see Figure 4.3) provide the position of the joint with a
resolution of 500 counts per revolution. When the controllers are implemented on the
robot these actual motor angle sensing provides feedback for our controller loop which
can continuously be compared to our desired angle. The encoder to motor shaft ratio
of 3:1 is calculated internally and so not considered in our model.

Figure 4.3: HEDS 9140 Encoder

General Control Structure

We want to build up two controllers for the electrical and mechanical part of the plant.
The robot already includes a fast current controller attached to each motor. For our
simulation we want to rebuild this very fast controller which can then be neglected for
the further mechanical control structure.

The main control focus is on the position control of the robot using the real angle feed-
back from the encoders. We introduce a cascaded control structure with position and
velocity feedback. The advantage of this two feedback loops is to eliminate disturbances
as fast as possible, means where they occur, and so makes the overall controller more
robust and precise. The feedback of position and velocity after transforming leads to a
PID controller with position feedback only and so can be implemented with our robot
sensors. Figure 4.4 shows the overall control-structure with the inner feedback loop for
current control and both outer ones for velocity and position. We will deal with both
control tunings for the electrical and mechanical part separated and integrate them
later.

48

4 Task 3 - Joint-space controllers

disturbance disturbance1

=)

PID Controller PI1 Controller

curent disturbance: torque distubance

electrical part

Cp c ke
q_dedred —_— Rl —_— —
Lo f—n 2 PO S 3 oo

3

Constant2 2 1 ‘ 3

mechanical part

km

T_ms+i
5 Integrator1

Gain1 Saturation1

Figure 4.4: Complete control structure

Controller types and (dis-)advantages

The control behaviour of our robot should be robust, fast and stable. Therefore we
tirst take a look at the main controller types to choose the best ones for our goals and
merge the advantages. The main basic controller types are Proportional, Integral and
Derivative, Table 4.1 shows their advantages and disadvantages.

Table 4.1: Controller types

Symbol Controller type Advantage Disadvantage

P Proportional fast maximum overshoot,
steady state error

I Integral eleminates steady state error high maximum overshoot,
slow
D Derivative smaller maximum overshoot steady state error

Current Control

The current control should be especially fast, because this control loop in between the
actual position loop should not slow down the whole moving robot. Therefore we will
use an proportional element with high gain which also can reduce the disturbance. For
also eliminating a steady state error we need an additional integral part and so we will
implement a PI-controller which has the general form of Equation 4.12.

Tprxs+1

C.=K B —— 4.10
c Pl * Tpp %5 ()

Setting Tp; = T, we can cancel out the pole of the plant and so make the system

49

4 Task 3 - Joint-space controllers

stable. With the rule of Equation 4.1 the control scheme in Figure 4.15 leads to the
closed loop transfer function in Equation 4.11, which shows PT1 behaviour.

il

disturbance2

current disturbance

’ o T_Pl.st+1 k e
T Pls T esti

current_des P-Controller1 3 5

v

Figure 4.5: Current Control

1

Tp;
ook XS +1

Ge = (4.11)

The root-locus plot, Figure 4.6, illustrates a stable behaviour as we only have a pole
on the real axis. The position of the pole and so the time constant can now be adjusted
choosing a Kp; gain. To get no influence on the position controller we want to let the
system be 10 times faster than the outer mechanical control. Using the time constant
to be Teurrent = & (Tpr = T,) with Teyrrent = Tposition/lo we pre-set Kpr = 30 and so
Teurrent = 0.006 and if needed adjust later using these constraints.

The performed tuning leads to the current controller:

C. =30+ T“;ei;rl (4.12)

A look on the step response in Figure 4.7 emphasizes a quite fast and stable control.
Due to physical motor constraints the current is limited internally.

Position and Velocity Control

For controlling the position of the motors we implement the cascaded control of Fig-
ure 4.8. Setting up the control types we start at the inner loop using the velocity
feedback. It is reasonable to eliminate the pole of the PT1 behaviour of the motor model.
We will need an integral and proportional part to exploit advantages of the control types
especially reducing the steady state error and reaching fast control, respectively. With

50

4 Task 3 - Joint-space controllers

Root Locus

=
T

w
T

()
T

Imaginary Axis (secomds"‘)

&
T

IS
T

5 , , , .
140 120 -100 -80 -60 -40 20 0 20
Real Axis (secorwdsﬁ

Figure 4.6: root locus plot of current control

current

08

q response
o
=]
:

o
e
T

0z2r

0 0.5 1 15 2 25 3 35 4 45 5
time

Figure 4.7: step response current control (disturbance at t=3)

these considerations we get the controller structure of Equation 4.13 for velocity control.
For position feedback no additional disturbance is visible and so a fast P-controller as
C, is sufficient for position control.

(4.13)

Cp =K, (4.14)

with: T, = Ty,

51

4 Task 3 - Joint-space controllers

disturbance3

torque disturbance

3 PID(z)

PID Controllert

Q Cv
0
‘ 4

Figure 4.8: cascaded position and velocity control

mechanical part

k.m

o L
T_m.s+1 dg s q_m

0 Integrator2 Scopei

(9]
o

Constant1

‘-JDI

Gain2 Saturation2

After cancelling out the pole-zero compensation we get G; from Equation 4.15 as
the closed loop transfer function of the inner velocity loop. With this first step we can
compute the whole closed loop transfer function G, shown in Equation 4.16

G, = 1; (4.15)
T ¥ S +1

1

G():
1,241
ek, ¥ 8-t ks +1

(4.16)

It shows up to be a second order system which can be described with the general
formula [BS09]

1
G, = (4.17)
’ %%*524—%*5—%1

with:
wy — natural frequency
{ - damping ratio

Comparing our system with the general scheme we get the constraints for K, and K,

2
K, = 2Fo*Wn i* Wn (4.18)
m
2
_ w”l
Ky = (4.19)

52

4 Task 3 - Joint-space controllers

Another constraint to the controller is the desired settling time T, reaching 90% of
the goal value with the step response. In a general way we can calculate it with [KJA11]

4
= Fran

The trajectory generation provides new positions in small time steps, here we assume
maximal position changes of 5°, which therefore is the biggest step function that can
apply. Comparing with the maximal motor speed of 72°/s (from motor data-sheet)
which means 0.07s for 5°, we set our desired settling time to 1 second as the motor
could start and end with zero velocity. For less oscillation in our system we choose our
damping ratio { = 0.9. Using transformed Equation 4.20 we calculate w,, = 4.44rad /s
Plugging in these values in Equation 4.18 and Equation 4.19 we get

S

(4.20)

K, = 6.4,K, = 3.16 (4.21)

We check our calculation with drawing the root locus function of the system. Fig-
ure 4.9 shows a complex pole pair. This means we will get a slightly oscillating system
behaviour. Nevertheless the poles are quite close to the real axis and with choosing
small proportional parts the system will be well damped. The resulting small oscillation
therefore is accepted, but to make sure we also test the step response function.

Root Locus

@™

=}

Imaginary Axis (sec0ﬂds‘1)

-3.5 -3 -2.5 -2 -1.5 -1
Real Axis (secnnds'wj

Figure 4.9: root locus plot for cascaded control
In Figure 4.10 we see a adequate fast response with an overshoot of less than 2% and

no visible oscillation. Also the torque disturbance at time t = 3 is controlled fast and
no steady state error stays.

53

4 Task 3 - Joint-space controllers

position and velocity
1 S T]
’
r’/
08 I/,l
@ i
wl |
S 06 |
=3 |
w
o |
= |
0.4 !
|
|
|
|
0.2 !
I
)
)
; A N N N N I N
0 05 1 15 2 25 3 a5 4 45 5
time

Figure 4.10: step response cascaded control (torque disturbance at t = 3s)

Equivalence and Integration
Our developed cascaded controller uses velocity and position feedback to control the

system. As mentioned in the beginning the robot has only position sensors on each joint.
Nevertheless the acceleration can be computed internally and so the overall cascaded
controller for the mechanical part can be simplified by some transformation steps.
Figure 4.11 shows a PID controller with only position feedback from the real robot and
is equivalent to the cascaded structure we developed. We can use a prepared PID-block
from the simulink library and set the parameters for the proportional, integral and
derivative part of the controller with the following equivalence formulas [robotics]:

P = kpxky*Ty+ky (4.22)
I = kpxky (4.23)
(4.24)

D - kv*Tv

This mathematical transformation assumes the derivative part with a transfer func-
tion of D x s only. This is theoretically correct, but practically not implementable. In
reality a derivative is modelled by D x fﬂ, including a filter coefficient N [KJA11].
With N we can filter out high frequencies and so we choose N = 20 for a reliable control.

Nevertheless the derivative part reacts quite strong to a step response, as shown in

54

4 Task 3 - Joint-space controllers

disturbance4
torque disturbance
k_m 1
PID(s) _/' 1 >
T_m.s+1 dq s q
3 Integrator2

Step2 PID Controller2 Saturation2

Figure 4.11: equivalent PID-controller

Figure 4.12. The system is overshooting by more than 20% which is different to the
cascaded control and not acceptable. These results leads to the use of the cascaded
control for the further work, assuming a velocity sensor on the robot. Nevertheless
the "equivalent” PID controller could be used for a robot simulation or the real robot.
In reality the trajectory generator provides a smooth interpolated trajectory, with no

jumps as the step response, and so a derivative controller is useful.

position and velocity PID
/'\‘\\
12F
RN
| S
1r | ——
I
I
L |
q 08 |
w
=
=] |
@
O 06 I|
o
|
0.4 |
|
|
02r !
|
!
. I R DR S S
0 0.5 1 15 2 25 3 35 4 45 5

time

Figure 4.12: Step response PID-controller

As the next step we integrate the electrical and mechanical plant including their
controllers (3 feedback loops at all for current, velocity and position) to the complete
controlled system. Figure 4.13 shows the complete model, also including the feed-
back for induced voltage, which was neglected for tuning. The flexibility can not
be considered here, because no real-q feedback is provided in this model. The step
response in Figure 4.14 emphasizes a stable adequate fast control without oscillation.
The overshooting is less than 1%, which is quite good. 90% of the desired value is

55

4 Task 3 - Joint-space controllers

reached in less than a second. A current disturbance of 0.5 at time ¢ = 3s is nearly not
visible and the torque disturbance of 0.5 at ¢t = 7 is well controlled, no steady state

error stays.

disturbanca4

mechanical part

Integratord

4 1
I CME p
TransferFen2 Integrator6

Gan10
60/ 2°pi)

Gain13

torque
saturation2

o
Gain1

-

_m
] Integrator? current
saturation3

P-Controller3

Figure 4.13: complete controlled model

complete controlled modell
1r - e
s
I.";
i
08 ! 4

II
|

[1H]

E |

S 06 | 1

a J

] |

&

. |

0.4 1
|
0.2y 1
|
|
D] 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
time

Figure 4.14: step response complete model (disturbance currence at t=5, torque t = 7)

Limitations due to the sampling time

For setting up and tuning our controllers we assumed the system to behave in contin-
uous time. Nevertheless in reality the signals and calculation is discretized in small
time samples. The continuous movement of the robot is converted into a digital signal

56

4 Task 3 - Joint-space controllers

by encoder sensing, which works as an A/D-converter. Control calculation then is
done in fixed time samples and the output is converted with another D/A-converter to
go back to the real-world system. We assume all these effects including the CAN-bus
rate either including zero-order hold elements in the feedback loops or calculating
the PID-controller in discrete time. This is done by transforming the function of s in
the z domain. Internally a fixed step size numerical approximation of the system is
executed [Bem11].

As the current control is done internally in the robot and we assume it to be really
fast, we neglect the discretization for the current control part.

We choose a sampling of 1 kHz or T = 0.001s. As we tuned our controller with
a quite fast w,, this sampling does not have a great impact to the robust control, except
of discrete signals processing. Nevertheless with lower sampling rates one should be
careful to not violate the Nyquist-Shannon sampling theorem and so cannot follow the
robots continuous time behaviour with the controller.

As a test we have a look at the step response of our adjusted system. As there can be
no difference be seen, except of a discrete sampled signal, we do not have to show it
here.

For using the robot simulation as robot sensor feedback also sample and hold
elements with T, should be inserted everywhere where discretization can be
expected.

4.2 Improvements with model-based controller actions

For the first controller implementation many torque influencing parameters were not
really considered, but assumed as disturbances. Although the controller can handle the
disturbances every disturbance decreases the controllers performance. Since we know
various parameters we now try to integrate them in the controller to improve accuracy
and robustness.

Gravity compensation

The most obvious influence to all the links is gravity. It depends on the static gravity
acceleration of 9.81m/s? in ground direction and is affected to every body on earth.
Since the robot is moving it changes over time differently for every joint. As sensor
teedback we get a g vector containing all actual link angles of the robot and so gravity
torque can be computed continuously for all joints. Again we use the Newton-Euler
recursive function (N_rec) from task one. By passing the parameters g with all joint
angles, assuming a static system in small time steps so that § and § equal zero, and the

57

4 Task 3 - Joint-space controllers

gravity vector to the function, we get torques to compensate depending on the actual
robot position (see Figure 4.16)

"(Et:fl)

M(a)i+ C(a.a)q + v(a) + (a)= u,

Figure 4.15: Equation of Motion [Giul5]

g(q) = NErec(qa 0,0, g)

Figure 4.16: Function Call of NE_rec to get the gravity vector [Giul5]

We embed the calculation in a Matlab embedded function block for Simulink and
so can use the g signal to compute the torque resulting from gravity. We simply add
the computed gravity value for the link to the torque input of the motor, because this
effort has always to be applied. For visualization in Figure 4.17 the gravity block is
included in a single motor model. Of course all g positions have to be provided for the
embedded function and so a torque vector u for all joints is computed.

It is not only possible to determine gravity, but in the same way you can verify
friction and centripetal acceleration. An extended feedback here would be to calculate
the complete 1 vector as it is done in task 1 again in an embedded function block. In
this case the matlab function block for calculating the gravity is simply replaced by one
that calculates the n-vector.

Feedforward control

If a trajectory with high speed should be followed, only including the desired position
is not sufficient. In this case we can also provide velocity and acceleration from the
trajectory generator to make the control faster. This procedure is called feedforward
compensation and also implemented in Figure 4.17. As both values are fed in the
specific control loop of the cascaded control, we here show only the mathematically
transformed structure in the PID control loop. Both 4 and § are pre-calculated with the
motor constants k,, and T, and can then be fed in the control loop. The feedforward
compensation leads to a smaller tracking error, but of course works better, the more
precise the robot model is. As it is a feed in with no additional control loop there will
no bad influence to the stability of the system.

58

4 Task 3 - Joint-space controllers

trajectory feedforward control

il

disturbance1

ddq_desired

torque disturbance

dq_desired mechanical plant

PID(z) _/' Km » L N
torqug T_m.s+1 dq S qm
¢_desired PID Controller3 Gain2 Saturationd 5 Integrator2 Scope

MATLAB Function1

Figure 4.17: model-based control: feedforward control (cyan) and gravity compensation
(green)

59

5 Modularizing Newton-Euler method

Responsible: Benedikt Feldotto

Idea

The Newton-Euler algorithm is an important part for the robot control. It is used
for the simulation of the robot but also could help improve the controller behaviour
for example with using gravity compensation. In task 1 we considered a fixed robot
assembly, nevertheless as a global goal we want to deal with modular robots and so it
is reasonable to also modularize the Newton-Euler algorithm. With this chapter we
want to introduce a possible approach for a flexible robot dynamics calculation.

The Robot user does not want to care about any assignments especially does not want
to build or rebuild Simulink models. Therefore a control panel as the one in Figure 5.1
could be used where the user just chooses the link types he attached to the robot in the
right order from a drop-down menu and finally chooses the end-effector.

Implementation

The Newton-Euler method uses a forward and backward phase to calculate the dynam-
ics. In both phases each iteration step is directly associated to one link. We can copy
this structure to a simulink model and get a subsystem for each link module. Using
input ports as shown in Figure 5.2 an inner matlab function block computes the output
values. Instead of the whole forward and backward phase only one iteration step of
each phase is implemented.

Realising the whole iteration loops we copy equal subsystems and connect them
forwards and backwards regarding to the forward and backward loop of the Newton-
Euler algorithm (Figure 5.3). Initialisation blocks with zero vectors ensure the first
variable assignment in later calculation steps. Additionally we will need a module
for the base, only providing the initial velocities for the Newton-Euler algorithm, and
a module for the end-effector containing applied forces for initializing the backward
loop.

We determine a maximum number of modules for the robot (which makes sense in
case of physical constraints) and so for the number of Simulink Subsystems. Neverthe-

60

5 Modularizing Newton-Euler method

Control of Modular Robots

Select the links of your robot

link 1 lnktype B .. v
link 2 lnktype B .. W
link 3 linktype C ... v

link 4 endeffector... v

.
fink 3 nene v

link & none W

Figure 5.1: control panel for user-friendly control [Giul5]

less in case of using less modules than prepared subsystem a logic ensures a correct
signal routing. This contains enabling the used Subsystems for the used number of
modules but also the assignment of the endeffector forces to the right module number.

In the model itself signal routing also ensures to connect pre-saved data for the
different module types such as mass, inertia matrix and transformation to be provided
to the right calculation subsystem as there is an input reserved for links characteristics.

A first programmatic sketch for this modular implementation is provided as source
code with this work.

61

5 Modularizing Newton-Euler method

=1%

M q_dot this jointt

NMw, w_dot, v_dot previous joint

N this link characteristics

) next llink characteristics

Nn. f next joint

w, w_dot v_dot this joint [»

torque this joint [»

f, n this joint [»

link1

Figure 5.2: subsystem for Newton-Euler iteration step

Compare
To Constants

q_dotjaint 1

w v dot, w_dot b

o C—

link data1

a_dot this jointt
torque this joint

w wdot, v_dot previous joint

Compare | __

torqued

q_dotjaint 2

(2)—»]a ot nis jointt

this link characteristics w vedot v_dot this joint

xt link

£, n this joint [
, T next joint

link1

link data2

—®{this link characteristics

P next link characteristics

n, 1 next joint

w vedot, v_dot previous joint

w, w_dot v_dot this joint

torque this joint

1, n this joint f—

link2

o_dot t

v vt

link data3

Switcht Kz
2
>

I
#

Switch1

-

5

]
1

link

next llir

n, fne:

Figure 5.3: Newton-Euler: forward and backward signal routing

62

6 Conclusion

Kinematic control conclusion

In the first task, i.e. the kinematic modelling, the forward kinematics algorithm was
implemented and tested. In addition, an iterative method to solve the inverse kinematics
problem. However, there was a problem when iterating to find the joint angles for
a desired pose. Therefore, the orientation part was neglected and the iteration was
implemented to find the required joint angles to reach a desired end-effector position.
Furthermore, a method to design joint space trajectories was implemented using a third
order polynomial. As a next next step, a solution forthe inverse kinematics problem
may be found by using Unit Quaternion so that the pose of the end-effector can be
worked on as a whole. Automatic models shall be implemented to find the DH-tables.
Moreover, using the Schunk robotic arm, kinematic calibrations can be done to better
estimate the DH parameters.

In the dynamics tasks we could build a simulator for the robot. This simulator uses
kinematic and dynamic parameters of the robot to calculate the actual joint position
from appplied torques. Using a motor model of the actuators control loops for the
electrical and mechanical parts were build and tuned. In conclusion desired positions
can be reached fast without oscillation and small overshooting. The decentralized
controllers are robust for a various number of attached joints as disturbances can
be well controlled. In next steps the motor models and robot simulation should be
improved with measurements on the real robot. With more precise models the control
behaviour can be adjusted especially for the model-based control algorithms. Finally
the controllers can be fine tuned on the real robot. With look on the modular robots
we suggested an approach for modularizing the Newton-Euler algorithm as a central
computation for simulation and control. Work should be spent on automating the
simulation, so that only a control panel should work as a user interface and so easy
modelling can be done.

In the last task we developed an kinematic control algorithm which delivers, based
on its input of the desired position of the end effector, a movement of each joint of
the robot. This can be used to control the robot in task B. While implementing the
algorithm we found out that the inverse or pseudo inverse of the Jacobian matrix, which
is used for the described conversion, is really cost-efficient and therefor not fitted for

63

6 Conclusion

the algorithm, which has to operate in realtime. To avoid this, we used the transpose of
the Jacobian matrix, which proved to be an efficient choice for our task.

Dynamics and Control conclusion

In the dynamics tasks we could build a simulator for the robot. This simulator uses
kinematic and dynamic parameters of the robot to calculate the actual joint position
from appplied torques. Using a motor model of the actuators control loops for the
electrical and mechanical parts where build and tuned. In conclusion desired positions
can be reached fast without oscillation and small overshooting. The decentralized
controllers are robust for a various number of attached joints as disturbances can
be well controlled. In next steps the motor models and robot simulation should be
improved with measurements on the real robot. With more precise models the control
behaviour can be adjusted especially for the model-based control algorithms. Finally
the controllers can be fine tuned on the real robot. With look on the modular robots
we suggested an approach for modularizing the Newton-Euler algorithm as a central
computation for simulation and control. Work should be spend on automating the
simulation, so that only a control panel should work as a user interface and so easy
modelling can be done.

64

List

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
211

212
213
2.14
2.15
2.16
217

2.18

3.1
3.2
3.3
34
35
3.6
3.7
3.8
39

of Figures

Schunk LWA 4P Motion Limits
Schunk LWA 4P Assigned Coordinate Frames
Powerball Zero Configuration
Manipulator Configuration With Random Angles
Convergence time of different valuesof &
End-effector Positionin X-ZPlane
End-effector Positionin Y-ZPlane
Position Profile in a Cubic Polynomial Timing Law
Velocity Profile in a Cubic Polynomial Timing Law
Acceleration Profile in a Cubic Polynomial Timing Law
Left: Assembly variant 1. All calculations are based on this. Right:
Assembly variant2. L Lo oo
Simulink model for the trajectory design.
Example output of the designed trajectory algorithm.
Matlab code for the trajectory design.
Simulink model for kinematic control.
Example output of the kinematic control algorithm.
Second sample output of the kinematic control algorithm. Based on
input (2.39) ...
Third sample output of the kinematic control algorithm. Based on input
(240) . .

Adjusted coordinate frames oo Lo
Newton-Euler velocities/acceleration
Newton-Euler torques and forces
Newton-Euler jointtorque
Equationof Motion L
NE recfunctioncalls e
Robot dynamics simulation
DCmotor.
Circuit diagram for armature controlled DC motor.

O 0 = W

65

List of Figures

3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
52
53

Simulink odel combining electrical and mechanical subsystem of DC

MOLOT. o e 35
Combination of motor model with Newton Euler computation. 36
Electric power of motor type 1. L. 37
Electric power of motor type 2. L. 38
Induced current of motor type 1. L 39
Induced current of motor type 2. oL 40
Torque of motor type 1. L 41
Torque of motor type 2. 42
Angular position of motor type 1. o L oL 43
Angular position of motor type 2. Lo oL 44
Motormodel 46
PT1 Motormodel 47
Encoder. 48
Control structure 49
CurrentControl L 50
Root locus plot current control 51
Step response current control 51
Cascaded controlloops L o L 52
Root locus plot position and velocity control 53
Step response cascaded control oL 54
Equivalent PID-controller 55
Step response PID controller 55
Complete controlled model 56
Step response complete model o 0oL 56
Equationof Motion L o 58
Function call gravity vector 58
Model-based Control 59
Example control panel o oL 61
Newton-Euler Subsystem 62
Newton-Euler modular model 62

66

List of Tables

2.1 DH Parameters of the Schunk LWA 4P Manipulator
2.2 Random Joint Angle Assignments

41 Exampletable L o

67

References

[Bem11]
[BS09]

[Burl5]

[Cra05]

[G.P12]

[Giul5]
[HKSR]

[KJA11]

[M.N08]

[MWS06]

[Sch15]
[SHV06]

[SKO08]

[SSVO10]

[Curl4]

P. A. Bemporad. Automatic Control (lecture University of Trento). 2011.

L. V. G. O. B. Siciliano L. Sciavicco. Robotics - Modelling, Planning and Control.
Springer-Verlag, 2009.

D. Burschka. Robotics (lecture TUM). 2015.

J. J. Craig. Introduction to robotics: Mechanics and control. 3. ed., interna-
tional ed. Pearson education international. Upper Saddle River, NJ: Pearson
Prentice Hall, 2005. 1sBN: 0-13-123629-6.

P. G. R. D. G.Prasad N.Sree Ramya. “Modelling and Simulation Analysis of
the Brushless DC Motor by using MATLAB.” In: (2012).

A. Giusti. Recall of Dynamics. 2015.

U. K. M. H. K. Samitha Ransara. “Modelling and Analysis of a Low Cost
Brushless DC Motor Drive.” In: ().

B. W. K. J. Astrém. Computer-controlled systems - Theory and Design. Dover
Publications Inc., 2011.

S. M. M.Nizam.Kamarudin. “Simulink Implementation of Digital Cascade
Control DC Motor Model - A didactic approach.” In: (2008).

M. V. Mark W. Spong Seth Hutchinson. Robot Modeling and Control. Wiley,
2006.

Schunk. Powerball Lightweight Arm LWA 4P. 2015.

M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control.
Hoboken, NJ: Wiley, 2006. 1sBN: 978-0-471-64990-8.

B. Siciliano and O. Khatib, eds. Springer Handbook of Robotics. Berlin, Heidel-
berg: Springer Science+Business Media, 2008. 1sBN: 978-3-540-23957-4. por:
10.1007/978-3-540-30301-5.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling,
planning and control. Advanced textbooks in control and signal processing.
London: Springer, 2010. 1sBN: 978-1-84628-641-4.

Curtis Bradley. Robotic ArmCalibration and Control. 2014.

68

http://dx.doi.org/10.1007/978-3-540-30301-5

References

Glossary

Armature voltage (V)

Armature inductance (L)

Armature resistence (R)

Back EMF (V)

Back EMF constant (Kj)

Torque at link i (7;)

Induced current (i)

Generated torque ()

Angular position of the joint (6)

Angular velocity of joint (8)

Angular acceleration of joint (6)

Rotation matrix from frame i+1 to frame i (R')
Translation into Z-direction of frame i+1 (Z;,1)
Vector of positions of origins of frame i+1 to link i (P;;1)
Linear acceleration of link-frame origin i (v;)
Linear acceleration of the center of mass of link i (7,)
Mass of link (m)

Force acting on the center of mass of link i (F)
Inertia Tensor (I)

Torque acting on the center of mass of link i (N;)
Force exerted on link i by link i-1 (f;)

Torque exerted on link i by link i-1 ()

Inertia (J)

Torsional Stiffness (K;)

Fricton constant (B)

Angular position of the rotor (q)

Torque Constant (Ky,)

Angular velocity of joint (wy,)

Angular velocity of conductor (w,)

Radius of joint (7)

Radius of conductor (7,)

Gear ratio (K;)

Angular velocity of joint (6;,)

Angular velocity of conductor (6,)

Inertia of joint (J,,)

69

References

Inertia of conductor (J,)

70

	Abstract
	Introduction
	Kinematic Modelling and Kinematic Control
	Forward Kinematics
	Denavit-Hartenberg Convention
	Homogeneous Transformation Matrix
	Position and Orientation Representation
	Forward Kinematics Test

	Inverse Kinematics
	The Jacobian Matrix
	Inverse Kinematics Iterative Method
	Joint Space Trajectories for Point-to-Point Motion

	Kinematic Control
	Robot Assemblies

	Kinematic Control in task space
	Trajectory design in task space
	Kinematic control

	Dynamical Model
	Equation of motion (EoM) of the manipulator
	EoM using Newton-Euler Algorithm
	Simulating the robot

	Deriving a dynamical model of the actuators and combining it with the Simulink Model of task B.1)
	Theoretical background: DC motor
	Equations describing DC motor
	Deriving a Simulink Model for the DC motor equations

	Task 3 - Joint-space controllers
	Designing decentralized controllers
	Improvements with model-based controller actions

	Modularizing Newton-Euler method
	Conclusion
	List of Figures
	List of Tables
	References

